
www.manaraa.com
6 | A Design Pattern Language for Engineering (Parallel) Software

Contributors

Index Words

Intel® Technology Journal | Volume 13, Issue 4, 2009

Abstract
The key to writing high-quality parallel software is to develop a robust software
design. This applies not only to the overall architecture of the program, but
also to the lower layers in the software system where the concurrency and
how it is expressed in the final program is defined. Developing technology to
systematically describe such designs and reuse them between software projects
is the fundamental problem facing the development of software for tera-scale
processors. The development of this technology is far more important than
programming models and their supporting environments, since with a good
design in hand, most any programming system can be used to actually generate
the program’s source code.

In this article, we develop our thesis about the central role played by the
software architecture. We show how design patterns provide a technology to
define the reusable design elements in software engineering. This leads us to the
ongoing project centered at UC Berkeley’s Parallel Computing Laboratory (Par
Lab) to pull the essential set of design patterns for parallel software design into
a Design Pattern Language. After describing our pattern language, we present
a case study from the field of machine learning as a concrete example of how
patterns are used in practice.

The Software Engineering Crisis
The trend has been well established [1]: parallel processors will dominate
most, if not every, niche of computing. Ideally, this transition would be driven
by the needs of software. Scalable software would demand scalable hardware
and that would drive CPUs to add cores. But software demands are not
driving parallelism. The motivation for parallelism comes from the inability
of integrated circuit designers to deliver steadily increasing frequency gains
without pushing power dissipation to unsustainable levels. Thus, we have a
dangerous mismatch: the semiconductor industry is banking its future on
parallel microprocessors, while the software industry is still searching for an
effective solution to the parallel programming problem.

The parallel programming problem is not new. It has been an active area of
research for the last three decades, and we can learn a great deal from what has
not worked in the past.

Kurt Keutzer
UC Berkeley

Tim Mattson
Intel Corporation

Design Pattern Language
Software Architecture
Parallel Algorithm Design
Application Frameworks

A DESIGN PATTERN LANGUAGE FOR ENGINEERING (PARALLEL)
SOFTwARE

www.manaraa.com

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Design Pattern Language for Engineering (Parallel) Software | 7

 • Automatic parallelism. Compilers can speculate, prefetch data, and reorder
instructions to balance the load among the components of a system.
However, they cannot look at a serial algorithm and create a different
algorithm better suited for parallel execution.

 • New languages. Hundreds of new parallel languages and programming
environments have been created over the last few decades. Many of them
are excellent and provide high-level abstractions that simplify the expression
of parallel algorithms. However, these languages have not dramatically
grown the pool of parallel programmers. The fact is, in the one community
with a long tradition of parallel computing (high-performance computing),
the old standards of MPI [2] and OpenMP [3] continue to dominate.
There is no reason to believe new languages will be any more successful as
we move to more general-purpose programmers; i.e., it is not the quality
of our programming models that is inhibiting the adoption of parallel
programming.

The central cause of the parallel programming problem is fundamental to the
enterprise of programming itself. In other words, we believe that our challenges
in programming parallel processors point to deeper challenges in programming
software in general. We believe the only way to solve the programming
problem in general is to first understand how to architect software. Thus,
we feel that the way to solve the parallel programming problem is to first
understand how to architect parallel software. Given a good software design
grounded in solid architectural principles, a software engineer can produce
high-quality and scalable software. Starting with an ill-suited sense of the
architecture for a software system, however, almost always leads to failure.
Therefore, it follows that the first step in addressing the parallel programming
problem is to focus on software architecture. From that vantage point, we
have a hope of choosing the right programming models and building the right
software frameworks that will allow the general population of programmers to
produce parallel software.

In this article, we describe our work on software architecture. We use the
device of a pattern language to write our ideas down and put them into a
systematic form that can be used by others. After we present our pattern
language [4], we present a case study to show how these patterns can be used to
understand software architecture.

Software Architecture and Design Patterns
Productive, efficient software follows from good software architecture. Hence,
we need to better formalize how software is architected, and in order to do
this we need a way to write down architectural ideas in a form that groups of
programmers can study, debate, and come to consensus on. This systematic
process has at its core the peer review process that has been instrumental in
advancing scientific and engineering disciplines.

“It is not the quality of our

programming models that is

inhibiting the adoption of parallel

programming.”

“Given a good software design

grounded in solid architectural

principles, a software engineer can

produce high-quality and scalable

software.”

www.manaraa.com

Intel® Technology Journal | Volume 13, Issue 4, 2009

8 | A Design Pattern Language for Engineering (Parallel) Software

The prerequisite to this process is a systematic way to write down the design
elements from which an architecture is defined. Fortunately, the software
community has already reached consensus on how to write these elements
down in the important work Design Patterns [5]. Our aim is to arrive at a
set of patterns whose scope encompasses the entire enterprise of software
development from architectural description to detailed implementation.

Design Patterns
Design patterns give names to solutions to recurring problems that experts in
a problem-domain gradually learn and take for granted. It is the possession of
this tool-bag of solutions, and the ability to easily apply these solutions, that
precisely defines what it means to be an expert in a domain.

For example, consider the Dense-Linear-Algebra pattern. Experts in fields that
make heavy use of linear algebra have worked out a family of solutions to these
problems. These solutions have a common set of design elements that can be
captured in a Dense-Linear-Algebra design pattern. We summarize the pattern
in the sidebar, but it is important to know that in the full text to the pattern
[4] there would be sample code, examples, references, invariants, and other
information needed to guide a software developer interested in dense linear
algebra problems.

The Dense-Linear-Algebra pattern is just one of the many patterns a software
architect might use when designing an algorithm. A full design includes high-
level patterns that describe how an application is organized, mid-level patterns
about specific classes of computations, and low-level patterns describing specific
execution strategies. We can take this full range of patterns and organize them
into a single integrated pattern language — a web of interlocking patterns
that guide a designer from the beginning of a design problem to its successful
realization [6, 7].

To represent the domain of software engineering in terms of a single pattern
language is a daunting undertaking. Fortunately, based on our studies of
successful application software, we believe software architectures can be built
up from a manageable number of design patterns. These patterns define the
building blocks of all software engineering and are fundamental to the practice
of architecting parallel software. Hence, an effort to propose, argue about, and
finally agree on what constitutes this set of patterns is the seminal intellectual
challenge of our field.

“Design patterns give names to

solutions to recurring problems

that experts in a problem-domain

gradually learn and take for granted.”

Computational Pattern: Dense-Linear-Algebra
Solution: A computation is organized as a
sequence of arithmetic expressions acting on
dense arrays of data. The operations and data
access patterns are well defined mathematically
so data can be pre-fetched and CPUs can
execute close to their theoretically allowed
peak performance. Applications of this pattern
typically use standard building blocks defined
in terms of the dimensions of the dense arrays
with vectors (BLAS level 1), matrix-vector
(BLAS level 2), and matrix-matrix (BLAS level
3) operations.

“A full design includes high-level

patterns that describe how an

application is organized, mid-level

patterns about specific classes of

computations, and low-level patterns

describing specific execution strategies.”

www.manaraa.com

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Design Pattern Language for Engineering (Parallel) Software | 9

Our Pattern Language
Software architecture defines the components that make up a software system,
the roles played by those components, and how they interact. Good software
architecture makes design choices explicit, and the critical issues addressed by
a solution clear. A software architecture is hierarchical rather than monolithic.
It lets the designer localize problems and define design elements that can be
reused in other architectures.

The goal of Our Pattern Language (OPL) is to encompass the complete
architecture of an application from the structural patterns (also known as
architectural styles) that define the overall organization of an application [8,
9] to the basic computational patterns (also known as computational motifs)
for each stage of the problem [10, 1], to the low-level details of the parallel
algorithm [7]. With such a broad scope, organizing our design patterns into a
coherent pattern language was extremely challenging.

Our approach is to use a layered hierarchy of patterns. Each level in the
hierarchy addresses a portion of the design problem. While a designer may in
some cases work through the layers of our hierarchy in order, it is important to
appreciate that many design problems do not lend themselves to a top-down
or bottom-up analysis. In many cases, the pathway through our patterns will
be to bounce around between layers with the designer working at whichever
layer is most productive at a given time (so called, opportunistic refinement).
In other words, while we use a fixed layered approach to organize our patterns
into OPL, we expect designers will work though the pattern language in many
different ways. This flexibility is an essential feature of design pattern languages.

As shown in Figure 1, we organize OPL into five major categories of patterns.
Categories 1 and 2 sit at the same level of the hierarchy and cooperate to create
one layer of the software architecture.

1. Structural patterns: Structural patterns describe the overall organization of
the application and the way the computational elements that make up the
application interact. These patterns are closely related to the architectural
styles discussed in [8]. Informally, these patterns correspond to the “boxes
and arrows” an architect draws to describe the overall organization of an
application. An example of a structural pattern is Pipe-and-Filter, described
in the sidebar.

2. Computational patterns: These patterns describe the classes of
computations that make up the application. They are essentially the
thirteen motifs made famous in [10] but described more precisely as
patterns rather than simply computational families. These patterns can be
viewed as defining the “computations occurring in the boxes” defined by
the structural patterns. A good example is the Dense-Linear-Algebra pattern
described in an earlier sidebar. Note that some of these patterns (such as
Graph-Algorithms or N-Body-Methods) define complicated design problems
in their own right and serve as entry points into smaller design pattern
languages focused on a specific class of computations. This is yet another
example of the hierarchical nature of the software design problem.

“It is important to appreciate that

many design problems do not lend

themselves to a top-down or bottom-

up analysis.”

Structural Pattern: Pipe-and-Filter
Solution: Structure an application as a fixed
sequence of filters that take input data from
preceding filters, carry out computations on that
data, and then pass the output to the next filter.
The filters are side-effect free; i.e., the result of
their action is only to transform input data into
output data. Concurrency emerges as multiple
blocks of data move through the Pipe-and-Filter
system so that multiple filters are active at one
time.

www.manaraa.com

Intel® Technology Journal | Volume 13, Issue 4, 2009

10 | A Design Pattern Language for Engineering (Parallel) Software

In OPL, the top two categories, the structural and computational patterns,
are placed side by side with connecting arrows. This shows the tight coupling
between these patterns and the iterative nature of how a designer works with
them. In other words, a designer thinks about his or her problem, chooses a
structural pattern, and then considers the computational patterns required
to solve the problem. The selection of computational patterns may suggest a
different overall structure for the architecture and may force a reconsideration
of the appropriate structural patterns. This process, moving between structural
and computational patterns, continues until the designer settles on a high-level
design for the problem.

Structural and computational patterns are used in both serial and parallel
programs. Ideally, the designer working at this level, even for a parallel
program, will not need to focus on parallel computing issues. For the
remaining layers of the pattern language, parallel programming is a primary
concern.

Parallel programming is the art of using concurrency in a problem to make the
problem run to completion in less time. We divide the parallel design process
into the following three layers.

3. Concurrent algorithm strategies: These patterns define high-level strategies
to exploit concurrency in a computation for execution on a parallel
computer. They address the different ways concurrency is naturally
expressed within a problem by providing well-known techniques to exploit
that concurrency. A good example of an algorithm strategy pattern is the
Data-Parallelism pattern.

4. Implementation strategies: These are the structures that are realized in
source code to support (a) how the program itself is organized and (b)
common data structures specific to parallel programming. The Loop-Parallel
pattern is a well-known example of an implementation strategy pattern.

5. Parallel execution patterns: These are the approaches used to support the
execution of a parallel algorithm. This includes (a) strategies that advance a
program counter and (b) basic building blocks to support the coordination
of concurrent tasks. The single instruction multiple data (SIMD) pattern is
a good example of a parallel execution pattern.

Patterns in these three lower layers are tightly coupled. For example, software
designs using the Recursive-Splitting algorithm strategy often utilize a Fork/Join
implementation strategy pattern which is typically supported at the execution
level with the thread-pool pattern. These connections between patterns are a key
point in the text of the patterns.

Concurrent Algorithm Strategy Pattern:
Data-Parallelism
Solution: An algorithm is organized as
operations applied concurrently to the elements
of a set of data structures. The concurrency is
in the data. This pattern can be generalized by
defining an index space. The data structures
within a problem are aligned to this index space
and concurrency is introduced by applying a
stream of operations for each point in the index
space.

Implementation Strategy Pattern:
Loop-Parallel
Solution: An algorithm is implemented as
loops (or nested loops) that execute in parallel.
The challenge is to transform the loops so that
iterations can safely execute concurrently and in
any order. Ideally, this leads to a single source
code tree that generates a serial program (by
using a serial compiler) or a parallel program
(by using compilers that understand the parallel
loop constructs).

Parallel Execution Pattern: SIMD
Solution: An implementation of a strictly data
parallel algorithm is mapped onto a platform
that executes a single sequence of operations
applied uniformly to a collection of data
elements. The instructions execute in lockstep
by a set of processing elements but on their own
streams of data. SIMD programs use specialized
data structure, data alignment operations, and
collective operations to extend this pattern to a
wider range of data parallel problems.

www.manaraa.com

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Design Pattern Language for Engineering (Parallel) Software | 11

OPL draws from a long history of research on software design. The structural
patterns of Category 1 are largely taken from the work of Garlan and Shaw on
architectural styles [8, 9]. That these architectural styles could also be viewed
as design patterns was quickly recognized by Buschmann [11]. We added
two structural patterns that have their roots in parallel computing to Garlan
and Shaw’s architectural styles: Map-Reduce, influenced by [12] and Iterative-
Refinement, influenced by Valiant’s bulk-synchronous-processing pattern [13].
The computation patterns of Category 2 were first presented as “dwarfs” in
[10] and their role as computational patterns was only identified later [1].
The identification of these computational patterns in turn owes a debt to Phil
Colella’s unpublished work on the “Seven Dwarfs of Parallel Computing.”
The lower three categories within OPL build on earlier and more traditional
patterns for parallel algorithms by Mattson, Sanders, and Massingill [7]. This
work was somewhat inspired by Gamma’s success in using design patterns for
object-oriented programming [5]. Of course all work on design patterns has its
roots in Alexander’s ground-breaking work identifying design patterns in civil
architecture [6].

Applications

Structural Patterns

Pipe-and-filter

Agent and Repository

Process Control

Event Based,
Implicit Incovation

Puppeteer

Model-view Controller

Iterative Refinement

Map Reduce

Layered Systems

Arbitrary Static
Task Graph

Computational Patterns

Graph Algorithms

Dynamic Programming

Dense Linear Algebra

Spare Linear Algebra

Unstructured Grids

Structured Grids

Graphical Models

Finite State Machines

N-Body Methods

Circuits

Spectral Methods

Monte Carlo

Parallel Execution Patterns
MIMD
SIMD

Thread Pool
Speculation

Task Graph
Data Flow
Digital Circuits

Msg. Pass
Collective Comm.
Mutual Exclusion

Pt-2-pt Sync.
Coll Sync.
Trans. Mem.

CoordinationAdvancing “Program Counters”

Implementation Strategy Patterns
SPMD
Strict Data Par

Fork/Join
Actors
Master/Worker
Graph Partitioning

Loop Par.
BSP
Task Queue

Shared Queue
Shared Hash Table

Distributed Array
Shared Data

Data StructureProgram Structure

Algorithm Strategy Patterns
Task Parallelism
Recursive Splitting

Data Parallelism
Pipeline

Discrete Event
Geometric Decomposition

Speculation

Backtrack Branch
and Bound

Figure 1: The Structure of OPL and the Five Categories of Design Patterns.
Details About Each of the Patterns can be Found in [4].
Source: UC Berkeley ParLab, 2009

“All work on design patterns has its

roots in Alexander’s ground-breaking

work identifying design patterns in

civil architecture.”

www.manaraa.com

Intel® Technology Journal | Volume 13, Issue 4, 2009

12 | A Design Pattern Language for Engineering (Parallel) Software

Case Study: Content-based Image Retrieval
Experience has shown that an easy way to understand patterns and how they
are used is to follow an example. In this section we describe a problem and its
parallelization by using patterns from OPL. In doing so we describe a subset of
the patterns and give some indication of the way we make transitions between
layers in the pattern language.

In particular, to understand how OPL can help software architecture, we
use a content-based image retrieval (CBIR) application as an example. From
this example (drawn from [14]), we show how structural and computational
patterns can be used to describe the CBIR application and how the lower-
layer patterns can be used to parallelize an exemplar component of the CBIR
application.

In Figure 2 we see the major elements of our CBIR application as well as the
data flow. The key elements of the application are the feature extractor, the
trainer, and the classifier components. Given a set of new images the feature
extractor will collect features of the images. Given the features of the new
images, chosen examples, and some classified new images from user feedback,
the trainer will train the parameters necessary for the classifier. Given the
parameters from the trainer, the classifier will classify the new images based on
their features. The user can classify some of the resulting images and give
feedback to the trainer repeatedly in order to increase the accuracy of the
classifier. This top-level organization of CBIR is best represented by the
Pipe-and-Filter structural pattern. The feature-extractor, trainer, and classifier
are filters or computational elements that are connected by pipes (data
communication channels). Data flows through the succession of filters that do
not share state and only take input from their input pipe(s). The filters perform
the appropriate computation on those data and pass the output to the next
filter(s) via its output pipe. The choice of Pipe-and-Filter pattern to describe the
top-level structure of CBIR is not unusual. Many applications are naturally
described by Pipe-and-Filter at the top level.

In our approach we architect software by using patterns in a hierarchical
fashion. Each filter within the CBIR application contains a complex set
of computations. We can parallelize these filters using patterns from OPL.
Consider, for example, the classifier filter. There are many approaches to
classification, but in our CBIR application we use a support-vector machine
(SVM) classifier. SVM is widely used for classification in image recognition,
bioinformatics, and text processing. The SVM classifier evaluates the function:

z = sgn b + ∑ yi αi Φ (xi , z)
l

i=lˆ { {
 where xi is the ith support vector, z is the query vector, Φ is the kernel function,
αi is the weight, yi in {-1, 1} is the label attached to support vector xi, b is a
parameter, and sgn is the sign function. In order to evaluate the function
quickly, we identified that the kernel functions are operating on the products
and norms of xi and z. We can compute the products between a set of query

Results

Choose Examples

User Feedback

New Images

Classifier

Trainer

Feature Extractor

Figure 2: The CBIR Application Framework
Source: UC Berkeley ParLab, 2009

“Many applications are naturally

described by Pipe-and-Filter at the

top level.”

www.manaraa.com

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Design Pattern Language for Engineering (Parallel) Software | 13

vectors and the support vectors by a BLAS level-3 operation with higher
throughput. Therefore, we compute the products and norms first, use the
results for computing the kernel values, and sum up the weighted kernel
values. We architect the SVM classifier as shown in Figure 3. The basic
structure of the classifier filter is itself a simple Pipe-and-Filter structure with
two filters: the first filter takes the test data and the support vectors needed to
calculate the dot products between the test data and each support vector. This
dot product computation is naturally performed by using the Dense-Linear-
Algebra computational pattern. The second filter takes the resulting dot
products, and the following steps are to compute the kernel values, sum up all
the kernel values, and scale the final results if necessary. The structural pattern
associated with these computations is Map-Reduce (see the Map-Reduce
sidebar).

In a similar way the feature-extractor and trainer filters of the CBIR application
can be decomposed. With that elaboration we would consider the “high-
level” architecture of the CBIR application complete. In general, to construct
a high-level architecture of an application, we decompose the application
hierarchically by using the structural and computational patterns of OPL.

Constructing the high-level architecture of an application is essential, and this
effort improves not just the software viability but also eases communication
regarding the organization of the software. However, there is still much work to
be done before we have a working software application. To perform this work
we move from the top layers of OPL (structural and computational patterns)
down into lower layers (concurrent algorithmic strategy patterns etc.). To
illustrate this process we provide additional detail on the SVM classifier filter.

Concurrent Algorithmic Strategy Patterns
After identifying the structural patterns and the computational patterns in
the SVM classifier, we need to find appropriate strategies to parallelize the
computation. In the Map-Reduce pattern the same computation is mapped
to different non-overlapping partitions of the state set. The results of these
computations are then gathered, or reduced. If we are interested in arriving
at a parallel implementation of this computation, then we define the Map-
Reduce structure in terms of a Concurrent Algorithmic Strategy. The natural
choices for Algorithmic Strategies are the Data-Parallelism and Geometric-
Decomposition patterns. By using the Data-Parallelism pattern we can compute
the kernel value of each dot product in parallel (see the Data-Parallelism
sidebar). Alternatively, by using the Geometric-Decomposition pattern (see the
Geometric-Decomposition sidebar) we can divide the dot products into regular
chunks of data, apply the dot products locally on each chunk, and then apply
a global reduce to compute the summation over all chunks for the final results.
We are interested in designs that can utilize large numbers of cores. Since the
solution based on the Data-Parallelism pattern exposes more concurrent tasks
(due to the large numbers of dot products) compared to the more coarse-
grained geometric decomposition solution, we choose the Data-Parallelism
pattern for implementing the map reduce computation.

Test Data

SV

Output

Dense Linear
Algebra

MapReduce

Compute
dot

products

Compute
Kernel values,
sum, & scale

Figure 3: The Major Computations of the SVM
Classifier
Source: UC Berkeley ParLab, 2009

Structural Pattern: Map-Reduce
Solution: A solution is structured in two phases:
(1) a map phase where items from an “input
data set” are mapped onto a “generated data set”
and (2) a reduction phase where the generated
data set is reduced or otherwise summarized
to generate the final result. It is easy to exploit
concurrency in the map phase, since the map
functions are applied independently for each
item in the input data set. The reduction phase,
however, requires synchronization to safely
combine partial solutions into the final result.

www.manaraa.com

Intel® Technology Journal | Volume 13, Issue 4, 2009

14 | A Design Pattern Language for Engineering (Parallel) Software

The use of the Data-Parallelism algorithmic strategy pattern to parallelize the
Map-Reduce computation is shown in the pseudo code of the kernel value
calculation and the summation. These computations can be summarized as
shown in Figure 4. Line 1 to line 4 is the computation of the kernel value on
each dot product, which is the map phase. Line 5 to line 13 is the summation
over all kernel values, which is the reduce phase. Function NeedReduce checks
whether element “i” is a candidate for the reduction operation. If so, the
ComputeOffset function calculates the offset between element “i” and another
element. Finally, the Reduce function conducts the reduction operation on
element “i” and “i+offset”.

Implementation Strategy Patterns
To implement the data parallelism strategy from the Map-Reduce pseudo-
code, we need to find the best Implementation Strategy Pattern. Looking at the
patterns in OPL, both the Strict-Data-Parallel and Loop-Parallel patterns are
applicable.

Whether we choose the Strict-data-parallel or Loop-parallel patterns in the
implementation layer, we can use the SIMD pattern for realizing the execution.
For example, we can apply SIMD on line 2 in Code Listing 1 for calculating
the kernel value of each dot product in parallel. The same concept can be used
on line 7 in Code Listing 1 for conducting the checking procedure in parallel.
Moreover, in order to synchronize the computations on different processing
elements on line 4 and line 12 in Code Listing 1, we can use the barrier
construct described within the Collective-Synchronization pattern for achieving
this goal.

function ComputeMapReduce(DotProdAndNorm, Result) {

1 for i ← 1 to n {

2 LocalValue[i] ←

 ComputeKernelValue(DotProdAndNorm[i]);

3 }

4 Barrier();

5 for reduceLevel ← 1 to MaxReduceLevel {

6 for i ← 1 to n {

7 if (NeedReduce(i, reduceLevel)) {

8 offset ← ComputeOffset(i, reduceLevel);

9 LocalValue[i] ← Reduce(LocalValue[i],

 LocalValue[i+offset]);

10 }

11 }

12 Barrier();

13 }

14}
Code Listing 1: Pseudo Code of the Map Reduce Computation
Source: Intel Corporation, 2009

Algorithm Strategy Pattern:
Geometric-Decomposition
Solution: An algorithm is organized by
(1) dividing the key data structures within
a problem into regular chunks, and (2)
updating each chunk in parallel. Typically,
communication occurs at chunk boundaries
so an algorithm breaks down into three
components: (1) exchange boundary data, (2)
update the interiors or each chunk, and (3)
update boundary regions. The size of the chunks
is dictated by the properties of the memory
hierarchy to maximize reuse of data from local
memory/cache.

Implementation Strategy Pattern:
Strict-Data-Parallel
Solution: Implement a data parallel algorithm
as a single stream of instructions applied
concurrently to the elements of a data set.
Updates to each element are either independent,
or they involve well-defined collective operations
such as reductions or prefix scans.

www.manaraa.com

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Design Pattern Language for Engineering (Parallel) Software | 15

In summary, the computation of the SVM classifier can be viewed as a
composition of the Pipe-and-Filter, Dense-Linear-Algebra, and Map-Reduce
patterns. To parallelize the Map-Reduce computation, we used the Data-
Parallelism pattern. To implement the Data-Parallelism Algorithmic Strategy,
both the Strict-Data-Parallel and Loop-Parallel patterns are applicable. We
choose the Strict-Data-Parallel pattern, since it seemed a more natural choice
given the fact we wanted to expose large amounts of concurrency for use on
many-core chips with large numbers of cores. It is important to appreciate,
however, that this is a matter of style, and a quality design could have been
produced by using the Loop-Parallel pattern as well. To map the Strict-Data-
Parallel pattern onto a platform for execution, we chose a SIMD pattern. While
we did not show the details of all the patterns used, along the way we used the
Shared-Data pattern to define the synchronization protocols for the reduction
and the Collective-Synchronization pattern to describe the barrier construct. It
is common that these functions (reduction and barrier) are provided as part of
a parallel programming environment; hence, while a programmer needs to be
aware of these constructs and what they provide, it is rare that they will need to
explore their implementation in any detail.

Other Patterns
OPL is not complete. Currently OPL is restricted to those parts of the
design process associated with architecting and implementing applications
that target parallel processors. There are countless additional patterns that
software development teams utilize. Probably the best known example is the
set of design patterns used in object-oriented design [8]. We made no attempt
to include these in OPL. An interesting framework that supports common
patterns in parallel object-oriented design is Thread Building Blocks (TBB)
[15].

OPL focuses on patterns that are ultimately expressed in software. These
patterns do not, however, address methodological patterns that experienced
parallel programmers use when designing or optimizing parallel software. The
following are some examples of important classes of methodological patterns.

 • Finding Concurrency patterns [7]. These patterns capture the process that
experienced parallel programmers use when exploiting the concurrency
available in a problem. While these patterns were developed before our set
of Computational patterns was identified, they appear to be useful when
moving from the Computational patterns category of our hierarchy to
the Parallel Algorithmic Strategy category. For example, applying these
patterns would help to indicate when geometric decomposition is chosen
over data parallelism as a dense linear algebra problem moves toward
implementation.

“We choose the Strict-Data-Parallel

pattern …. however, that is a matter

of style … a quality design could

have been produced using the Loop-

Parallelism pattern as well.”

“OPL focuses on patterns that are

ultimately expressed in software.”

www.manaraa.com

Intel® Technology Journal | Volume 13, Issue 4, 2009

16 | A Design Pattern Language for Engineering (Parallel) Software

 • Parallel Programming “Best Practices” patterns. This describes a broad range of
patterns we are actively mining as we examine the detailed work in creating
highly-efficient parallel implementations. Thus, these patterns appear to
be useful when moving from the Implementation Strategy patterns to the
Concurrent Execution patterns. For example, we are finding common
patterns associated with optimizing software to maximize data locality.

There is a growing community of programmers and researchers involved in
the creation of OPL. The current status of OPL, including the most recent
updates of patterns, can be found at: http://parlab.eecs.berkeley.edu/wiki/
patterns/patterns. This website also has links to details on our shorter monthly
patterns workshop as well as our longer, two-day, formal patterns workshop.
We welcome your participation.

Summary, Conclusions, and Future Work
We believe that the key to addressing the challenge of writing software is to
architect the software. In particular, we believe that the key to addressing
the new challenge of programming multi-core and many-core processors
is to carefully architect the parallel software. We can define a systematic
methodology for software architecture in terms of design patterns and a pattern
language. Toward this end we have taken on the ambitious project of creating
a comprehensive pattern language that stretches all the way from the initial
software architecture of an application down to the lowest-level details of
software implementation.

OPL is a work in progress. We have defined the layers in OPL, listed the
patterns at each layer, and written text for many of the patterns. Details are
available online [4]. On the one hand, much work remains to be done. On the
other hand, we feel confident that our structural patterns capture the critical
ways of composing software, and our computational patterns capture the key
underlying computations. Similarly, as we move down through the pattern
language, we feel that the patterns at each layer do a good job of addressing
most of the key problems for which they are intended. The current state of
the textual descriptions of the patterns in OPL is somewhat nascent. We need
to finish writing the text for some of the patterns and have them carefully
reviewed by experts in parallel applications programming. We also need to
continue mining patterns from existing parallel software to identify patterns
that may be missing from our language. Nevertheless, last year’s effort spent
in mining five applications netted (only) three new patterns for OPL. This
shows that while OPL is not fully complete, it is not, with the caveats described
earlier, dramatically deficient.

Complementing the efforts to mine existing parallel applications for patterns
is the process of architecting new applications by using OPL. We are currently
using OPL to architect and implement a number of applications in areas such
as machine learning, computer vision, computational finance, health, physical
modeling, and games. During this process we are watching carefully to identify

“We can define a systematic

methodology for software architecture

in terms of design patterns and a

pattern language.”

“We also need to continue mining

patterns from existing parallel software

to identify patterns that may be

missing from our language.”

www.manaraa.com

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Design Pattern Language for Engineering (Parallel) Software | 17

where OPL helps us and where OPL does not offer patterns to guide the
kind of design decisions we must make. For example, mapping a number of
computer-vision applications to new generations of many-core architectures
helped identify the importance of a family of data layout patterns.

The scope of the OPL project is ambitious. It stretches across the full range of
activities in architecting a complex application. It has been suggested that we
have taken on too large of a task; that it is not possible to define the complete
software design process in terms of a single design pattern language. However,
after many years of hard work, nobody has been able to solve the parallel
programming problem with specialized parallel programming languages or
tools that automate the parallel programming process. We believe a different
approach is required, one that emphasizes how people think about algorithms
and design software. This is precisely the approach supported by design
patterns, and based on our results so far, we believe that patterns and a pattern
language may indeed be the key to finally resolving the parallel programming
problem.

While this claim may seem grandiose, we have an even greater aim for our
work. We believe that our efforts to identify the core computational and
structural patterns for parallel programming has led us to begin to identify the
core computational elements (computational patterns, analogous to atoms)
and means of assembling them (structural patterns, analogous to molecular
bonding) of all electronic systems. If this is true, then these patterns not
only serve as a means to assist software design but can be used to architect a
curriculum for a true discipline of computer science.

References
[1] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J.

Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D.
Wessel, and K. Yelick. “A View of the Parallel Computing Landscape.”
Communications of the ACM, volume 51, pages 56-67, 2009.

[2] B. Chapman, G. Jost, and R van der Pas. Using OpenMP: Portable
Shared Memory Parallel Programming. MIT press, Cambridge,
Massachusetts, 2008.

[3] W. Gropp, E. Lusk, A. Skjellum. Using MPI: Portable Parallel
Programming with the Message Passing Interface. 2nd edition, MIT Press,
Cambridge, Massachusetts, 1999.

[4] http://parlab.eecs.berkeley.edu/wiki/patterns/patterns

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object Oriented Software. Addison-Wesley, Reading,
Massachusetts, 1994.

“Mapping a number of computer-

vision applications to new generations

of many-core architectures helped

identify the importance of a family of

data layout patterns.”

www.manaraa.com

Intel® Technology Journal | Volume 13, Issue 4, 2009

18 | A Design Pattern Language for Engineering (Parallel) Software

[6] C. Alexander, S. Ishikawa, M. Silverstein. A Pattern Language: Towns,
Buildings, Construction. Oxford University Press, New York, New York,
1977.

[7] T. G. Mattson, B. A. Sanders, B. L. Massingill. Patterns for Parallel
Programming. Addison Wesley, Boston, Massachusetts, 2004.

[8] D. Garlan and M. Shaw. “An introduction to software architecture.”
Carnegie Mellon University Software Engineering Institute Report CMU
SEI-94-TR-21, Pittsburg, Pennsylvania, 1994.

[9] Mary Shaw and David Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, Upper Saddle River, New Jersey,
1995.

[10] K. Asanovic, et al. “The landscape of parallel computing research:
A view from Berkeley.” EECS Department, University of California,
Berkeley, Technical Report UCB/EECS-2006-183, 2006.

[11] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-Oriented Software Architecture - A System of Patterns. Wiley,
Hoboken, New Jersey, 1996.

[12] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on
Large Clusters.” In Proceedings of OSDI ’04: 6th Symposium on Operating
System Design and Implementation. San Francisco, CA, December 2004.

[13] L. G. Valiant, “A Bridging Model for Parallel Computation.”
Communication of the ACM, volume 33, pages 103-111, 1990.

[14] Catanzaro, B., B. Su, N. Sundaram, Y. Lee, M. Murphy, and K. Keutzer.
“Efficient, High-Quality Image Contour Detection.” IEEE International
Conference on Computer Vision (ICCV09), pages 2381-2388, Kyoto
Japan, 2009.

[15] J. Reinders. Intel Threaded Building Blocks. O’Reilly Press, Sebastopol,
California, 2007.

Acknowledgments
The evolution of OPL has been strongly influenced by the collaborative
environment provided by Berkeley’s Par Lab. The development of the language
has been positively impacted by students and visitors in two years of graduate
seminars focused on OPL: Hugo Andrade, Chris Batten, Eric Battenberg,
Hovig Bayandorian, Dai Bui, Bryan Catanzaro, Jike Chong, Enylton Coelho,
Katya Gonina, Yunsup Lee, Mark Murphy, Heidi Pan, Kaushik Ravindran,
Sayak Ray, Erich Strohmaier, Bor-yiing Su, Narayanan Sundaram, Guogiang
Wang, and Youngmin Yi. The development of OPL has also received a boost
from Par Lab faculty — particularly Krste Asanovic, Jim Demmel, and David
Patterson. Monthly pattern workshops in 2009 also helped to shape the
language. Special thanks to veteran workshop moderator Ralph Johnson as well
as to Jeff Anderson-Lee, Joel Jones, Terry Ligocki, Sam Williams, and members
of the Silicon Valley Patterns Group.

www.manaraa.com

Intel® Technology Journal | Volume 13, Issue 4, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other
countries.
*Other names and brands may be claimed as the property of others.

A Design Pattern Language for Engineering (Parallel) Software | 19

Authors’ Biographies
Kurt Keutzer. After receiving his Ph.D. degree in Computer Science from
Indiana University in 1984, Kurt joined AT&T Bell Laboratories where he
was a Member of Technical Staff in the last of the golden era of Bell Labs
Research. In 1991 he joined Synopsys, Inc. where he served in a number of
roles culminating in his position as a Chief Technical Officer and Senior Vice-
President of Research. Kurt left Synopsys in January 1998 to become Professor
of Electrical Engineering and Computer Science at the University of California
at Berkeley. At Berkeley he worked with Richard Newton to initiate the
MARCO-funded Gigascale Silicon Research Center and was Associate Director
of the Center from 1998 until 2002. He is currently a principal investigator in
Berkeley’s Universal Parallel Computing Research Center.

Kurt has researched a wide number of areas related to both the design and
programming of integrated circuits, and his research efforts have led to four
best-paper awards. He has published over 100 refereed publications and co-
authored six books, his latest being Closing the Power Gap Between ASIC and
Custom. Kurt was made a Fellow of the IEEE in 1996.

Tim Mattson. Tim received a Ph.D. degree for his work on quantum
molecular scattering theory from UC Santa Cruz in 1985. Since then he
has held a number of commercial and academic positions working on the
application of parallel computers to mathematics libraries, exploration
geophysics, computational chemistry, molecular biology, and bioinformatics.

Dr. Mattson joined Intel in 1993. Among his many roles he was applications
manager for the ASCI Red Computer (the world’s first TeraFLOP computer),
helped create OpenMP, founded the Open Cluster Group, led the applications
team for the first TeraFLOP CPU (the 80-core tera-scale processor), launched
Intel’s programs in computing for the Life Sciences, and helped create
OpenCL.

Currently, Dr. Mattson is a Principal Engineer in Intel’s Visual Applications
Research Laboratory. He conducts research on performance modeling and
how different programming models map onto many-core processors. Design
patterns play a key role in this work and help keep the focus on technologies
that help the general programmer solve real parallel programming problems.

www.manaraa.com

Copyright of Intel Technology Journal is the property of Intel Corporation and its content may not be copied or

emailed to multiple sites or posted to a listserv without the copyright holder's express written permission.

However, users may print, download, or email articles for individual use.

