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Abstract
The key to writing high-quality parallel software is to develop a robust software 
design. This applies not only to the overall architecture of the program, but 
also to the lower layers in the software system where the concurrency and 
how it is expressed in the final program is defined. Developing technology to 
systematically describe such designs and reuse them between software projects 
is the fundamental problem facing the development of software for tera-scale 
processors. The development of this technology is far more important than 
programming models and their supporting environments, since with a good 
design in hand, most any programming system can be used to actually generate 
the program’s source code.

In this article, we develop our thesis about the central role played by the 
software architecture. We show how design patterns provide a technology to 
define the reusable design elements in software engineering. This leads us to the 
ongoing project centered at UC Berkeley’s Parallel Computing Laboratory (Par 
Lab) to pull the essential set of design patterns for parallel software design into 
a Design Pattern Language. After describing our pattern language, we present 
a case study from the field of machine learning as a concrete example of how 
patterns are used in practice.

The Software Engineering Crisis 
The trend has been well established [1]: parallel processors will dominate 
most, if not every, niche of computing. Ideally, this transition would be driven 
by the needs of software. Scalable software would demand scalable hardware 
and that would drive CPUs to add cores. But software demands are not 
driving parallelism. The motivation for parallelism comes from the inability 
of integrated circuit designers to deliver steadily increasing frequency gains 
without pushing power dissipation to unsustainable levels. Thus, we have a 
dangerous mismatch: the semiconductor industry is banking its future on 
parallel microprocessors, while the software industry is still searching for an 
effective solution to the parallel programming problem. 

The parallel programming problem is not new. It has been an active area of 
research for the last three decades, and we can learn a great deal from what has 
not worked in the past.
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 • Automatic parallelism. Compilers can speculate, prefetch data, and reorder 
instructions to balance the load among the components of a system. 
However, they cannot look at a serial algorithm and create a different 
algorithm better suited for parallel execution. 

 • New languages. Hundreds of new parallel languages and programming 
environments have been created over the last few decades. Many of them 
are excellent and provide high-level abstractions that simplify the expression 
of parallel algorithms. However, these languages have not dramatically 
grown the pool of parallel programmers. The fact is, in the one community 
with a long tradition of parallel computing (high-performance computing), 
the old standards of MPI [2] and OpenMP [3] continue to dominate. 
There is no reason to believe new languages will be any more successful as 
we move to more general-purpose programmers; i.e., it is not the quality 
of our programming models that is inhibiting the adoption of parallel 
programming.

The central cause of the parallel programming problem is fundamental to the 
enterprise of programming itself. In other words, we believe that our challenges 
in programming parallel processors point to deeper challenges in programming 
software in general. We believe the only way to solve the programming 
problem in general is to first understand how to architect software. Thus, 
we feel that the way to solve the parallel programming problem is to first 
understand how to architect parallel software. Given a good software design 
grounded in solid architectural principles, a software engineer can produce 
high-quality and scalable software. Starting with an ill-suited sense of the 
architecture for a software system, however, almost always leads to failure. 
Therefore, it follows that the first step in addressing the parallel programming 
problem is to focus on software architecture. From that vantage point, we 
have a hope of choosing the right programming models and building the right 
software frameworks that will allow the general population of programmers to 
produce parallel software. 

In this article, we describe our work on software architecture. We use the 
device of a pattern language to write our ideas down and put them into a 
systematic form that can be used by others. After we present our pattern 
language [4], we present a case study to show how these patterns can be used to 
understand software architecture. 

Software Architecture and Design Patterns
Productive, efficient software follows from good software architecture. Hence, 
we need to better formalize how software is architected, and in order to do 
this we need a way to write down architectural ideas in a form that groups of 
programmers can study, debate, and come to consensus on. This systematic 
process has at its core the peer review process that has been instrumental in 
advancing scientific and engineering disciplines. 

“It is not the quality of our 

programming models that is 

inhibiting the adoption of parallel 

programming.”

“Given a good software design 

grounded in solid architectural 

principles, a software engineer can 

produce high-quality and scalable 

software.”
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The prerequisite to this process is a systematic way to write down the design 
elements from which an architecture is defined. Fortunately, the software 
community has already reached consensus on how to write these elements 
down in the important work Design Patterns [5]. Our aim is to arrive at a 
set of patterns whose scope encompasses the entire enterprise of software 
development from architectural description to detailed implementation.

Design Patterns 
Design patterns give names to solutions to recurring problems that experts in 
a problem-domain gradually learn and take for granted. It is the possession of 
this tool-bag of solutions, and the ability to easily apply these solutions, that 
precisely defines what it means to be an expert in a domain.  

For example, consider the Dense-Linear-Algebra pattern. Experts in fields that 
make heavy use of linear algebra have worked out a family of solutions to these 
problems. These solutions have a common set of design elements that can be 
captured in a Dense-Linear-Algebra design pattern. We summarize the pattern 
in the sidebar, but it is important to know that in the full text to the pattern 
[4] there would be sample code, examples, references, invariants, and other 
information needed to guide a software developer interested in dense linear 
algebra problems. 

The Dense-Linear-Algebra pattern is just one of the many patterns a software 
architect might use when designing an algorithm. A full design includes high-
level patterns that describe how an application is organized, mid-level patterns 
about specific classes of computations, and low-level patterns describing specific 
execution strategies. We can take this full range of patterns and organize them 
into a single integrated pattern language — a web of interlocking patterns 
that guide a designer from the beginning of a design problem to its successful 
realization [6, 7].

To represent the domain of software engineering in terms of a single pattern 
language is a daunting undertaking. Fortunately, based on our studies of 
successful application software, we believe software architectures can be built 
up from a manageable number of design patterns. These patterns define the 
building blocks of all software engineering and are fundamental to the practice 
of architecting parallel software. Hence, an effort to propose, argue about, and 
finally agree on what constitutes this set of patterns is the seminal intellectual 
challenge of our field.

“Design patterns give names to 

solutions to recurring problems 

that experts in a problem-domain 

gradually learn and take for granted.”

Computational Pattern: Dense-Linear-Algebra
Solution: A computation is organized as a 
sequence of arithmetic expressions acting on 
dense arrays of data. The operations and data 
access patterns are well defined mathematically 
so data can be pre-fetched and CPUs can 
execute close to their theoretically allowed 
peak performance. Applications of this pattern 
typically use standard building blocks defined 
in terms of the dimensions of the dense arrays 
with vectors (BLAS level 1), matrix-vector 
(BLAS level 2), and matrix-matrix (BLAS level 
3) operations.

“A full design includes high-level 

patterns that describe how an 

application is organized, mid-level 

patterns about specific classes of 

computations, and low-level patterns 

describing specific execution strategies.”
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Our Pattern Language 
Software architecture defines the components that make up a software system, 
the roles played by those components, and how they interact. Good software 
architecture makes design choices explicit, and the critical issues addressed by 
a solution clear. A software architecture is hierarchical rather than monolithic. 
It lets the designer localize problems and define design elements that can be 
reused in other architectures.

The goal of Our Pattern Language (OPL) is to encompass the complete 
architecture of an application from the structural patterns (also known as 
architectural styles) that define the overall organization of an application [8, 
9] to the basic computational patterns (also known as computational motifs) 
for each stage of the problem [10, 1], to the low-level details of the parallel 
algorithm [7]. With such a broad scope, organizing our design patterns into a 
coherent pattern language was extremely challenging. 

Our approach is to use a layered hierarchy of patterns. Each level in the 
hierarchy addresses a portion of the design problem. While a designer may in 
some cases work through the layers of our hierarchy in order, it is important to 
appreciate that many design problems do not lend themselves to a top-down 
or bottom-up analysis. In many cases, the pathway through our patterns will 
be to bounce around between layers with the designer working at whichever 
layer is most productive at a given time (so called, opportunistic refinement). 
In other words, while we use a fixed layered approach to organize our patterns 
into OPL, we expect designers will work though the pattern language in many 
different ways. This flexibility is an essential feature of design pattern languages. 

As shown in Figure 1, we organize OPL into five major categories of patterns. 
Categories 1 and 2 sit at the same level of the hierarchy and cooperate to create 
one layer of the software architecture.

1. Structural patterns: Structural patterns describe the overall organization of 
the application and the way the computational elements that make up the 
application interact. These patterns are closely related to the architectural 
styles discussed in [8]. Informally, these patterns correspond to the “boxes 
and arrows” an architect draws to describe the overall organization of an 
application. An example of a structural pattern is Pipe-and-Filter, described 
in the sidebar.

2. Computational patterns: These patterns describe the classes of 
computations that make up the application. They are essentially the 
thirteen motifs made famous in [10] but described more precisely as 
patterns rather than simply computational families. These patterns can be 
viewed as defining the “computations occurring in the boxes” defined by 
the structural patterns. A good example is the Dense-Linear-Algebra pattern 
described in an earlier sidebar. Note that some of these patterns (such as 
Graph-Algorithms or N-Body-Methods) define complicated design problems 
in their own right and serve as entry points into smaller design pattern 
languages focused on a specific class of computations. This is yet another 
example of the hierarchical nature of the software design problem. 

“It is important to appreciate that 

many design problems do not lend 

themselves to a top-down or bottom-

up analysis.”

Structural Pattern: Pipe-and-Filter
Solution: Structure an application as a fixed 
sequence of filters that take input data from 
preceding filters, carry out computations on that 
data, and then pass the output to the next filter. 
The filters are side-effect free; i.e., the result of 
their action is only to transform input data into 
output data. Concurrency emerges as multiple 
blocks of data move through the Pipe-and-Filter 
system so that multiple filters are active at one 
time.
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In OPL, the top two categories, the structural and computational patterns, 
are placed side by side with connecting arrows. This shows the tight coupling 
between these patterns and the iterative nature of how a designer works with 
them. In other words, a designer thinks about his or her problem, chooses a 
structural pattern, and then considers the computational patterns required 
to solve the problem. The selection of computational patterns may suggest a 
different overall structure for the architecture and may force a reconsideration 
of the appropriate structural patterns. This process, moving between structural 
and computational patterns, continues until the designer settles on a high-level 
design for the problem. 

Structural and computational patterns are used in both serial and parallel 
programs. Ideally, the designer working at this level, even for a parallel 
program, will not need to focus on parallel computing issues. For the 
remaining layers of the pattern language, parallel programming is a primary 
concern.

Parallel programming is the art of using concurrency in a problem to make the 
problem run to completion in less time. We divide the parallel design process 
into the following three layers.

3. Concurrent algorithm strategies: These patterns define high-level strategies 
to exploit concurrency in a computation for execution on a parallel 
computer. They address the different ways concurrency is naturally 
expressed within a problem by providing well-known techniques to exploit 
that concurrency. A good example of an algorithm strategy pattern is the 
Data-Parallelism pattern.

4. Implementation strategies: These are the structures that are realized in 
source code to support (a) how the program itself is organized and (b) 
common data structures specific to parallel programming. The Loop-Parallel 
pattern is a well-known example of an implementation strategy pattern.

5. Parallel execution patterns: These are the approaches used to support the 
execution of a parallel algorithm. This includes (a) strategies that advance a 
program counter and (b) basic building blocks to support the coordination 
of concurrent tasks. The single instruction multiple data (SIMD) pattern is 
a good example of a parallel execution pattern.

Patterns in these three lower layers are tightly coupled. For example, software 
designs using the Recursive-Splitting algorithm strategy often utilize a Fork/Join 
implementation strategy pattern which is typically supported at the execution 
level with the thread-pool pattern. These connections between patterns are a key 
point in the text of the patterns. 

Concurrent Algorithm Strategy Pattern: 
Data-Parallelism 
Solution: An algorithm is organized as 
operations applied concurrently to the elements 
of a set of data structures. The concurrency is 
in the data. This pattern can be generalized by 
defining an index space. The data structures 
within a problem are aligned to this index space 
and concurrency is introduced by applying a 
stream of operations for each point in the index 
space.  

Implementation Strategy Pattern: 
Loop-Parallel 
Solution: An algorithm is implemented as 
loops (or nested loops) that execute in parallel. 
The challenge is to transform the loops so that 
iterations can safely execute concurrently and in 
any order. Ideally, this leads to a single source 
code tree that generates a serial program (by 
using a serial compiler) or a parallel program 
(by using compilers that understand the parallel 
loop constructs). 

Parallel Execution Pattern: SIMD
Solution: An implementation of a strictly data 
parallel algorithm is mapped onto a platform 
that executes a single sequence of operations 
applied uniformly to a collection of data 
elements. The instructions execute in lockstep 
by a set of processing elements but on their own 
streams of data. SIMD programs use specialized 
data structure, data alignment operations, and 
collective operations to extend this pattern to a 
wider range of data parallel problems.   



www.manaraa.com

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Design Pattern Language for Engineering (Parallel) Software   |   11

OPL draws from a long history of research on software design. The structural 
patterns of Category 1 are largely taken from the work of Garlan and Shaw on 
architectural styles [8, 9]. That these architectural styles could also be viewed 
as design patterns was quickly recognized by Buschmann [11]. We added 
two structural patterns that have their roots in parallel computing to Garlan 
and Shaw’s architectural styles: Map-Reduce, influenced by [12] and Iterative-
Refinement, influenced by Valiant’s bulk-synchronous-processing pattern [13]. 
The computation patterns of Category 2 were first presented as “dwarfs” in 
[10] and their role as computational patterns was only identified later [1]. 
The identification of these computational patterns in turn owes a debt to Phil 
Colella’s unpublished work on the “Seven Dwarfs of Parallel Computing.” 
The lower three categories within OPL build on earlier and more traditional 
patterns for parallel algorithms by Mattson, Sanders, and Massingill [7]. This 
work was somewhat inspired by Gamma’s success in using design patterns for 
object-oriented programming [5]. Of course all work on design patterns has its 
roots in Alexander’s ground-breaking work identifying design patterns in civil 
architecture [6].

Applications

Structural Patterns

Pipe-and-filter

Agent and Repository

Process Control

Event Based,
Implicit Incovation

Puppeteer

Model-view Controller

Iterative Refinement

Map Reduce

Layered Systems

Arbitrary Static
Task Graph

Computational Patterns

Graph Algorithms

Dynamic Programming

Dense Linear Algebra

Spare Linear Algebra

Unstructured Grids

Structured Grids

Graphical Models

Finite State Machines

N-Body Methods

Circuits
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MIMD
SIMD

Thread Pool
Speculation
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Data Flow
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Algorithm Strategy Patterns
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Discrete Event
Geometric Decomposition
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Backtrack  Branch 
and Bound

Figure 1: The Structure of OPL and the Five Categories of Design Patterns. 
Details About Each of the Patterns can be Found in [4]. 
Source: UC Berkeley ParLab, 2009

“All work on design patterns has its 

roots in Alexander’s ground-breaking 

work identifying design patterns in 

civil architecture.”
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Case Study: Content-based Image Retrieval
Experience has shown that an easy way to understand patterns and how they 
are used is to follow an example. In this section we describe a problem and its 
parallelization by using patterns from OPL. In doing so we describe a subset of 
the patterns and give some indication of the way we make transitions between 
layers in the pattern language.

In particular, to understand how OPL can help software architecture, we 
use a content-based image retrieval (CBIR) application as an example. From 
this example (drawn from [14]), we show how structural and computational 
patterns can be used to describe the CBIR application and how the lower-
layer patterns can be used to parallelize an exemplar component of the CBIR 
application.

In Figure 2 we see the major elements of our CBIR application as well as the 
data flow. The key elements of the application are the feature extractor, the 
trainer, and the classifier components. Given a set of new images the feature 
extractor will collect features of the images. Given the features of the new 
images, chosen examples, and some classified new images from user feedback, 
the trainer will train the parameters necessary for the classifier. Given the 
parameters from the trainer, the classifier will classify the new images based on 
their features. The user can classify some of the resulting images and give 
feedback to the trainer repeatedly in order to increase the accuracy of the 
classifier. This top-level organization of CBIR is best represented by the 
Pipe-and-Filter structural pattern. The feature-extractor, trainer, and classifier 
are filters or computational elements that are connected by pipes (data 
communication channels). Data flows through the succession of filters that do 
not share state and only take input from their input pipe(s). The filters perform 
the appropriate computation on those data and pass the output to the next 
filter(s) via its output pipe. The choice of Pipe-and-Filter pattern to describe the 
top-level structure of CBIR is not unusual. Many applications are naturally 
described by Pipe-and-Filter at the top level.

In our approach we architect software by using patterns in a hierarchical 
fashion. Each filter within the CBIR application contains a complex set 
of computations. We can parallelize these filters using patterns from OPL. 
Consider, for example, the classifier filter. There are many approaches to 
classification, but in our CBIR application we use a support-vector machine 
(SVM) classifier. SVM is widely used for classification in image recognition, 
bioinformatics, and text processing. The SVM classifier evaluates the function: 

z  = sgn  b + ∑ yi αi Φ (xi , z)
l 

i=lˆ { {
 where xi is the ith support vector, z is the query vector, Φ is the kernel function, 
αi is the weight, yi in {-1, 1} is the label attached to support vector xi, b is a 
parameter, and sgn is the sign function. In order to evaluate the function 
quickly, we identified that the kernel functions are operating on the products 
and norms of xi and z. We can compute the products between a set of query 

Results

Choose Examples

User Feedback

New Images

Classifier

Trainer

Feature Extractor

Figure 2: The CBIR Application Framework
Source: UC Berkeley ParLab, 2009

“Many applications are naturally 

described by Pipe-and-Filter at the 

top level.”
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vectors and the support vectors by a BLAS level-3 operation with higher 
throughput. Therefore, we compute the products and norms first, use the 
results for computing the kernel values, and sum up the weighted kernel 
values. We architect the SVM classifier as shown in Figure 3. The basic 
structure of the classifier filter is itself a simple Pipe-and-Filter structure with 
two filters: the first filter takes the test data and the support vectors needed to 
calculate the dot products between the test data and each support vector. This 
dot product computation is naturally performed by using the Dense-Linear-
Algebra computational pattern. The second filter takes the resulting dot 
products, and the following steps are to compute the kernel values, sum up all 
the kernel values, and scale the final results if necessary. The structural pattern 
associated with these computations is Map-Reduce (see the Map-Reduce 
sidebar). 

In a similar way the feature-extractor and trainer filters of the CBIR application 
can be decomposed. With that elaboration we would consider the “high-
level” architecture of the CBIR application complete. In general, to construct 
a high-level architecture of an application, we decompose the application 
hierarchically by using the structural and computational patterns of OPL.

Constructing the high-level architecture of an application is essential, and this 
effort improves not just the software viability but also eases communication 
regarding the organization of the software. However, there is still much work to 
be done before we have a working software application. To perform this work 
we move from the top layers of OPL (structural and computational patterns) 
down into lower layers (concurrent algorithmic strategy patterns etc.). To 
illustrate this process we provide additional detail on the SVM classifier filter.

Concurrent Algorithmic Strategy Patterns
After identifying the structural patterns and the computational patterns in 
the SVM classifier, we need to find appropriate strategies to parallelize the 
computation. In the Map-Reduce pattern the same computation is mapped 
to different non-overlapping partitions of the state set. The results of these 
computations are then gathered, or reduced. If we are interested in arriving 
at a parallel implementation of this computation, then we define the Map-
Reduce structure in terms of a Concurrent Algorithmic Strategy. The natural 
choices for Algorithmic Strategies are the Data-Parallelism and Geometric-
Decomposition patterns. By using the Data-Parallelism pattern we can compute 
the kernel value of each dot product in parallel (see the Data-Parallelism 
sidebar). Alternatively, by using the Geometric-Decomposition pattern (see the 
Geometric-Decomposition sidebar) we can divide the dot products into regular 
chunks of data, apply the dot products locally on each chunk, and then apply 
a global reduce to compute the summation over all chunks for the final results. 
We are interested in designs that can utilize large numbers of cores. Since the 
solution based on the Data-Parallelism pattern exposes more concurrent tasks 
(due to the large numbers of dot products) compared to the more coarse-
grained geometric decomposition solution, we choose the Data-Parallelism 
pattern for implementing the map reduce computation.

Test Data

SV

Output

Dense Linear
Algebra

MapReduce

Compute
dot

products

Compute
Kernel values,
sum, & scale

Figure 3: The Major Computations of the SVM 
Classifier 
Source: UC Berkeley ParLab, 2009

Structural Pattern: Map-Reduce
Solution: A solution is structured in two phases: 
(1) a map phase where items from an “input 
data set” are mapped onto a “generated data set” 
and (2) a reduction phase where the generated 
data set is reduced or otherwise summarized 
to generate the final result. It is easy to exploit 
concurrency in the map phase, since the map 
functions are applied independently for each 
item in the input data set. The reduction phase, 
however, requires synchronization to safely 
combine partial solutions into the final result.
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The use of the Data-Parallelism algorithmic strategy pattern to parallelize the 
Map-Reduce computation is shown in the pseudo code of the kernel value 
calculation and the summation. These computations can be summarized as 
shown in Figure 4. Line 1 to line 4 is the computation of the kernel value on 
each dot product, which is the map phase. Line 5 to line 13 is the summation 
over all kernel values, which is the reduce phase. Function NeedReduce checks 
whether element “i” is a candidate for the reduction operation. If so, the 
ComputeOffset function calculates the offset between element “i” and another 
element. Finally, the Reduce function conducts the reduction operation on 
element “i” and “i+offset”. 

Implementation Strategy Patterns
To implement the data parallelism strategy from the Map-Reduce pseudo-
code, we need to find the best Implementation Strategy Pattern. Looking at the 
patterns in OPL, both the Strict-Data-Parallel and Loop-Parallel patterns are 
applicable. 

Whether we choose the Strict-data-parallel or Loop-parallel patterns in the 
implementation layer, we can use the SIMD pattern for realizing the execution. 
For example, we can apply SIMD on line 2 in Code Listing 1 for calculating 
the kernel value of each dot product in parallel. The same concept can be used 
on line 7 in Code Listing 1 for conducting the checking procedure in parallel. 
Moreover, in order to synchronize the computations on different processing 
elements on line 4 and line 12 in Code Listing 1, we can use the barrier 
construct described within the Collective-Synchronization pattern for achieving 
this goal. 

function ComputeMapReduce( DotProdAndNorm, Result) {

1  for i ← 1 to n {

2    LocalValue[i] ← 

  ComputeKernelValue(DotProdAndNorm[i]);

3 }

4 Barrier();

5 for reduceLevel ← 1 to MaxReduceLevel {

6 for i ← 1 to n {

7     if (NeedReduce(i, reduceLevel) ) {

8      offset ← ComputeOffset(i, reduceLevel);

9      LocalValue[i] ← Reduce(LocalValue[i], 

            LocalValue[i+offset]);

10    }

11   }

12   Barrier();

13  }

14}
Code Listing 1: Pseudo Code of the Map Reduce Computation
Source: Intel Corporation, 2009

Algorithm Strategy Pattern: 
Geometric-Decomposition
Solution: An algorithm is organized by 
(1) dividing the key data structures within 
a problem into regular chunks, and (2) 
updating each chunk in parallel. Typically, 
communication occurs at chunk boundaries 
so an algorithm breaks down into three 
components: (1) exchange boundary data, (2) 
update the interiors or each chunk, and (3) 
update boundary regions. The size of the chunks 
is dictated by the properties of the memory 
hierarchy to maximize reuse of data from local 
memory/cache. 

Implementation Strategy Pattern: 
Strict-Data-Parallel 
Solution: Implement a data parallel algorithm 
as a single stream of instructions applied 
concurrently to the elements of a data set. 
Updates to each element are either independent, 
or they involve well-defined collective operations 
such as reductions or prefix scans.



www.manaraa.com

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Design Pattern Language for Engineering (Parallel) Software   |   15

In summary, the computation of the SVM classifier can be viewed as a 
composition of the Pipe-and-Filter, Dense-Linear-Algebra, and Map-Reduce 
patterns. To parallelize the Map-Reduce computation, we used the Data-
Parallelism pattern. To implement the Data-Parallelism Algorithmic Strategy, 
both the Strict-Data-Parallel and Loop-Parallel patterns are applicable. We 
choose the Strict-Data-Parallel pattern, since it seemed a more natural choice 
given the fact we wanted to expose large amounts of concurrency for use on 
many-core chips with large numbers of cores. It is important to appreciate, 
however, that this is a matter of style, and a quality design could have been 
produced by using the Loop-Parallel pattern as well. To map the Strict-Data-
Parallel pattern onto a platform for execution, we chose a SIMD pattern. While 
we did not show the details of all the patterns used, along the way we used the 
Shared-Data pattern to define the synchronization protocols for the reduction 
and the Collective-Synchronization pattern to describe the barrier construct. It 
is common that these functions (reduction and barrier) are provided as part of 
a parallel programming environment; hence, while a programmer needs to be 
aware of these constructs and what they provide, it is rare that they will need to 
explore their implementation in any detail.   

Other Patterns
OPL is not complete. Currently OPL is restricted to those parts of the 
design process associated with architecting and implementing applications 
that target parallel processors. There are countless additional patterns that 
software development teams utilize. Probably the best known example is the 
set of design patterns used in object-oriented design [8]. We made no attempt 
to include these in OPL. An interesting framework that supports common 
patterns in parallel object-oriented design is Thread Building Blocks (TBB) 
[15]. 

OPL focuses on patterns that are ultimately expressed in software. These 
patterns do not, however, address methodological patterns that experienced 
parallel programmers use when designing or optimizing parallel software. The 
following are some examples of important classes of methodological patterns.

 • Finding Concurrency patterns [7]. These patterns capture the process that 
experienced parallel programmers use when exploiting the concurrency 
available in a problem. While these patterns were developed before our set 
of Computational patterns was identified, they appear to be useful when 
moving from the Computational patterns category of our hierarchy to 
the Parallel Algorithmic Strategy category. For example, applying these 
patterns would help to indicate when geometric decomposition is chosen 
over data parallelism as a dense linear algebra problem moves toward 
implementation. 

“We choose the Strict-Data-Parallel 

pattern …. however, that is a matter 

of style … a quality design could 

have been    produced using the Loop-

Parallelism pattern as well.”

“OPL focuses on patterns that are 

ultimately expressed in software.”
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 • Parallel Programming “Best Practices” patterns. This describes a broad range of 
patterns we are actively mining as we examine the detailed work in creating 
highly-efficient parallel implementations. Thus, these patterns appear to 
be useful when moving from the Implementation Strategy patterns to the 
Concurrent Execution patterns. For example, we are finding common 
patterns associated with optimizing software to maximize data locality.

There is a growing community of programmers and researchers involved in 
the creation of OPL. The current status of OPL, including the most recent 
updates of patterns, can be found at: http://parlab.eecs.berkeley.edu/wiki/
patterns/patterns. This website also has links to details on our shorter monthly 
patterns workshop as well as our longer, two-day, formal patterns workshop. 
We welcome your participation. 

Summary, Conclusions, and Future Work
We believe that the key to addressing the challenge of writing software is to 
architect the software. In particular, we believe that the key to addressing 
the new challenge of programming multi-core and many-core processors 
is to carefully architect the parallel software. We can define a systematic 
methodology for software architecture in terms of design patterns and a pattern 
language. Toward this end we have taken on the ambitious project of creating 
a comprehensive pattern language that stretches all the way from the initial 
software architecture of an application down to the lowest-level details of 
software implementation. 

OPL is a work in progress. We have defined the layers in OPL, listed the 
patterns at each layer, and written text for many of the patterns. Details are 
available online [4]. On the one hand, much work remains to be done. On the 
other hand, we feel confident that our structural patterns capture the critical 
ways of composing software, and our computational patterns capture the key 
underlying computations. Similarly, as we move down through the pattern 
language, we feel that the patterns at each layer do a good job of addressing 
most of the key problems for which they are intended. The current state of 
the textual descriptions of the patterns in OPL is somewhat nascent. We need 
to finish writing the text for some of the patterns and have them carefully 
reviewed by experts in parallel applications programming. We also need to 
continue mining patterns from existing parallel software to identify patterns 
that may be missing from our language. Nevertheless, last year’s effort spent 
in mining five applications netted (only) three new patterns for OPL. This 
shows that while OPL is not fully complete, it is not, with the caveats described 
earlier, dramatically deficient. 

Complementing the efforts to mine existing parallel applications for patterns 
is the process of architecting new applications by using OPL. We are currently 
using OPL to architect and implement a number of applications in areas such 
as machine learning, computer vision, computational finance, health, physical 
modeling, and games. During this process we are watching carefully to identify 

“We can define a systematic 

methodology for software architecture 

in terms of design patterns and a 

pattern language.”

“We also need to continue mining 

patterns from existing parallel software 

to identify patterns that may be 

missing from our language.”
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where OPL helps us and where OPL does not offer patterns to guide the 
kind of design decisions we must make. For example, mapping a number of 
computer-vision applications to new generations of many-core architectures 
helped identify the importance of a family of data layout patterns. 

The scope of the OPL project is ambitious. It stretches across the full range of 
activities in architecting a complex application. It has been suggested that we 
have taken on too large of a task; that it is not possible to define the complete 
software design process in terms of a single design pattern language. However, 
after many years of hard work, nobody has been able to solve the parallel 
programming problem with specialized parallel programming languages or 
tools that automate the parallel programming process. We believe a different 
approach is required, one that emphasizes how people think about algorithms 
and design software. This is precisely the approach supported by design 
patterns, and based on our results so far, we believe that patterns and a pattern 
language may indeed be the key to finally resolving the parallel programming 
problem.

While this claim may seem grandiose, we have an even greater aim for our 
work. We believe that our efforts to identify the core computational and 
structural patterns for parallel programming has led us to begin to identify the 
core computational elements (computational patterns, analogous to atoms) 
and means of assembling them (structural patterns, analogous to molecular 
bonding) of all electronic systems. If this is true, then these patterns not 
only serve as a means to assist software design but can be used to architect a 
curriculum for a true discipline of computer science. 
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